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STEREOSPECIFICITY OF THE CATALYSIS
OF GF BY THE ORGANOPHOSPHORUS ACID ANHYDROLASE
AND PHOSPHOTRIESTERASE ENZYMES

1. INTRODUCTION

The enzyme organophoshorus acid anhydrolase (OPAA), from
Alteromonas sp. JD6.5 has been shown to catalyze the hydrolysis of a number of toxic
organophosphorus compounds including several G-type chemical nerve agents."? The
enzyme has been cloned into Escherichia coli and can be produced at concentrations
up to 300 mg per liter of culture, corresponding to approximately 50% of the total
cellular protein. A similar OPAA enzyme from Alteromonas haloplanktis has also been
cloned and expressed in E. coli.®

The phosphotriesterase enzyme (PTE) has catalytic properties similar to
OPAA in addition to some catalytic activity against VX. The PTE gene was found in
nature on plasmids in both Pseudomonas diminuta MG and Flavobacterium sp.
ATCC 27551 bacteria.>®” The gene has been cloned, sequenced®® and over-
expressed in several systems.* ' PTE catalyzes the hydrolysis of a broad spectrum of
organophosphorus compounds including those with P-O, P-F, P-CN and P-S bonds to
their leaving groups.®'>'® Recently, a number of site-directed mutants derived from
PTE have also been characterized with respect to their activity against various
organophosphate compounds.'®"®

While considerable work has been published on the initial rate kinetics of
these enzymes on various chemical agent substrates, relatively little attention has been
paid to their stereospecificity, which is an important consideration for at least two
reasons. First, it is possible that differential activity on stereoisomers could affect the
overall enzymatic detoxification rate. For that reason, it needs to be determined
whether all (or at least the most toxic) stereoisomers of a particular chemical agent are
effective substrates for these enzymes. Second, it is possible that enzymatic
stereospecificity could be exploited to produce higher value products through synthetic
routes. Stereoselective enzymatic synthesis is a research area of considerable
interest, for which John Cornforth was awarded a Nobel Prize in 1975.'° Single
enantiomer compounds play a role of great importance as biologically active
compounds. The stereoselective and substrate-specific nature of enzymes makes
them a good choice as catalysts in the synthesis of pharmaceuticals and other fine
chemicals. Since the OPAA and PTE enzymes used in this study have been cloned,
produced and purified in quantity, it was feasible to study their stereospecific
interaction with various substrates.

Nerve agents and enzymes all exert their effects in a biological, chiral
environment, so it should be expected that those effects would be stereoselective. This
was first reported in 1955 by Michel,° who observed a biphasic inhibition of
acetylcholinesterase (AChE) with GB. It is currently known that the chemical nerve




agents GD (o-pinacolyl methylphosphonofluoridate), GB (o-isopropyil
methyiphosphonofluoridate), GA (ethyl N,N-dimethylphosphoramidocyanidate) and VX
(o-ethyl-S-[2-diisopropylaminoethyl] methylphosphonothiolate) all bind AChE
stereospecifically resulting in a significant difference in toxicity between their respective
enantiomers (Table).

Table. Toxicity of GB, GD, VX and GA isomers

Compound | Isomer(s) LDsp Reference
(mouse, pg/kg)

GB P(-) 41 Boter et al., Biochem. Pharmacol.
1969, 18, 2403-2407

GB Racemic |83 Van De Meent et al., TNO,
unpublished results, 1987

VX P(-) 12.6 (Hall et al., J. Pharm. Pharmacol.
1977, 29, 574-576

VX P(+) 165 Hall et al., J. Pharm. Pharmacol.
1977, 29, 574-576

VX Racemic |20.1 Van De Meent et al., TNO,
unpublished results, 1987

GD C(+)P(-) |99 . Benschop et al., Toxicol. Appl.
Pharmacol. 1984, 72, 61-74

GD C(-)P(-) 38 Benschop et al., Toxicol. Appl.
Pharmacol. 1984, 72, 61-74

GD C(+)P(+) |>5000 Benschop et al., Toxicol. Appl.
Pharmacol. 1984, 72, 61-74

GD C(-)P(+) >2000 Benschop et al., Toxicol. Appl.
Pharmacol. 1984, 72, 61-74

GD Racemic [ 156 Benschop et al., Toxicol. Appl.
Pharmacol. 1984, 72, 61-74

GA P(-) 119 Degenhardt et al., J. Am. Chem. Soc.
1986, 708, 8290-8291

GA P(+) 837 Degenhardt et al., J. Am. Chem. Soc.
1986, 108, 8290-8291

GA Racemic | 308 Degenhardt et al., J. Am. Chem. Soc.
1986, 108, 8290-8291

GF is not listed in the table because the toxicity of individual GF isomers
has not been reported in the literature. However, the material safety data sheet for GF
(Edgewood Arsenal Special Report EO-SR-74002, December 1974, available from
Defense Technical Information Center as AD C014 792) lists the intravenous toxicity of
GF to rats at 53.0 ug/kg, to rabbits as 15.3 ug/kg and to goats as 9 ug/kg for the
racemic material. Thus, the toxicity of racemic GF is comparable to that of GB and GD.
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The known toxicities of G-agent and VX isomers can be summarized as
follows:

e GD: The P(-) isomers account for essentially all of the compound'’s
toxicity.

e GB: P(-)GBis approximately twice as toxic as racemic GB, indicating
that essentially all the toxicity is derived from the P(-) isomer.

e VX: The (-) isomer is approximately 13 times more toxic than the

(+) isomer.
e GA: The (-) isomer is approximately 7 times more toxic than the
(+) isomer.
e GF: Toxicity of individual sterecisomers has not previously been
reported.
2. MATERIALS AND METHODS
2.1 Enzyme Assays.

Enzyme assays were conducted with a fluoride electrode attached to a
Fisher Accumet 925 meter. Reactions were conducted in a temperature-controlled
vessel in a total volume of 2.5 mL. Buffering was provided by 50 mM bis-tris-propane
at pH 7.2. MnCl, was added to the buffer to a final concentration of 1 mM for OPAA
assays only (Mn?* activates OPAA).

22 Gas Chromatography Method for Separation of GF Isomers.

A Hewlett-Packard model 6890 gas chromatograph equipped with a flame
photometric detector in the phosphorus mode and a 25 m X 250 umid X 0.12 yum
Chirasil-Val--L column (Chrompack) was used to analyze the GF stereoisomers.

The oven temperature was 90 °C (isothermal) and the inlet and detector temperatures
both were 200 °C. The injection volume was 1.0 pL with a 100:1 split ratio. The carrier
gas was helium with a 1 mL/min flow rate. Under these conditions the (-)GF and (+)GF
peaks were separated by 0.15 min at a retention time of approximately 8 min.

2.3 Polarimetry.

Specific rotation of the single GF isomer was calculated based on
measurements of the observed rotation made at 589 nm (sodium line) using a Perkin
Elmer 141 Electronic Polarimeter and a sample cell with a path length of 10 cm.




24 AChE Inhibition Assays.

AChE enzyme inhibition assays were conducted essentially as described
previously.?® 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) was obtained from Aldrich
Chemical Co. (Milwaukee, WI). DTNB (0.01 M) was dissolved in 100 mM potassium
phosphate buffer pH 7.0. AChE was purchased from Sigma Chemical Co. (St. Louis,
MO). Acetylthiocholine (a chromagenic AChE substrate) was purchased from Aldrich
as an iodide salt and was 98% pure.

AChE solutions were made up to 10 ng/mL in water and split into two
fractions. To one fraction was added 1 uL of a 10”° dilution of GF (either racemic or the
chromatographically-pure single isomer) in isopropanol. The other fraction (uninhibited)
received no GF. Aliquots were removed in triplicate from both fractions and analyzed
for their activity on acetylthiocholine by spectrophotometric measurements at 405 nm.

25 Construction of Mutant PTE Strain.

The site-directed mutant PTE strain was constructed using the method of
overlap extension? and cassette insertion with a synthetic gene (Wohlschlegel,
personal communication).

2.6 Enzyme Preparation.

The JD6.5 OPAA enzyme was prepared as described elsewhere.?
Briefly, the Escherichia coli host cell containing the cloned OPAA gene was grown to
late log phase in 1 L of LB broth in a bioreactor. Cells were harvested and the enzyme
was purified by ammonium sulfate fractionation. The 40-65% ammonium sulfate pellet
was redissolved, dialyzed and loaded onto a 10 mL Q Sepharose column. The enzyme
was eluted from the column with a linear gradient of 0.2 to 0.6 M NaCl. Subsequent
polyacrylamide gel electrophoresis of the pooled active protein peaks showed a single
band.

Cells of Escherichia coli XL1 strain harboring pVSEOP7 (unpublished
results) were used to purify the phosphotriesterase (PTE) enzyme. The pVSEOP7
contains a full-length opd gene cloned in the expression vector, pSE420 (Invitrogen
Corp., CA, USA).

The cells were grown in Luria-Bertani broth in 6-L Erlenmeyer flasks
containing 100 ug/mL ampicillin at 30 °C. The cells were grown to early log-phase
(0.5 Asoo), and induced with 0.6 mM IPTG. After induction, the cells were grown for an
additional 14 hrs and 1 mM cobalt chloride was added. The cells were harvested four
hrs after the addition of cobalt, by centrifugation and suspended in 10 mM bis-tris-
propane, pH 7.8. Cells were frozen and stored at -40 °C before use. The cells were
lysed by passing twice through a French press. The cell-free extract supernatant was
collected following centrifugation at 15,000 rpm in a JA20 rotor for 45 min.

10



The native PTE enzyme was purified from the cell-free extract using a
single strong cation exchange resin (unpublished protocol). The fractions containing the
PTE activity were pooled, concentrated, and dialyzed against 10 mM BTP, pH 7.8
containing 50 UM cobalt chloride. The purified enzyme analyzed through native
acrylamide gel electrophoresis (results not shown) was determined to be around
85-90% homogeneity. The protein content was determined using Coomassie Protein
Assay Reagent (Pierce, Rockford, IL, USA) with BSA as a standard protein.

The A. haloplanktis OPAA enzyme was prepared from the American Type
Culture Collection strain 23821.

3. RESULTS AND DISCUSSION

3.1 Assays - Theory.

Fluoride electrode assays offer a convenient means to determine whether
there is differential activity on organophosphofluoridate stereoisomers. If defluorination
activity is approximately similar on all stereocisomers, the plot of free (released) fluoride
vs. time will approximate that obtained by base-mediated hydrolysis (equal activity on all
isomers). If half the isomers are degraded significantly more rapidly than the others,
there will be a midpoint deflection in the slope of the line (stereopreference). Based on
these assumptions, approximate theoretical plots of released fluoride vs. time are
illustrated in Figure 1.

3.2 JD6.5 OPAA Catalysis of Racemic GF: Differential Activity at 3 mM
vs. 0.5 mM GF. '

Figure 2 shows the results of JD6.5 OPAA catalysis of GF at a
concentration of 3 mM. The monophasic curve is consistent with an enzyme that
possesses similar activity on each of the two isomers.

Figure 3 shows the results of JD6.5 OPAA activity on GF ata
concentration of 0.5 mM. In this instance, the curve exhibits a distinct midpoint
deflection with the latter slope approaching that of the spontaneous rate. These results
are consistent with substantially differential activity on the two stereoisomers and stand
in marked contrast to the results observed with the higher (3 mM) GF concentration.

11
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Figure 1. Theoretical curves illustrating the expected profiles of enzymes with similar
activity on all isomers (no stereoselectivity), preferential activity on a single
isomer (or half the isomers) and spontaneous hydrolysis. The curve without
stereoselectivity shows no midpoint deflection whereas the stereoselectivity
curve shows a midpoint deflection with the slope of the second half of the
curve approaching that of the spontaneous hydrolysis rate.
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Figure 2. Activity profile of the JD6.5 OPAA enzyme with 3 mM GF. The curve is
essentially monophasic, suggestive of similar activity on both GF isomers.
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Figure 3. Activity profile of JD6.5 OPAA with 0.5 mM GF. The curve shows a distinct
midpoint deflection, consistent with differential activity on the two isomers.

In 1965, Christen and Van den Muysenberg® observed a biphasic
hydrolysis of low GB concentrations in rat plasma. When they did the same experiment
with diisopropylfluorophosphate (a symmetrical molecule) the hydrolysis curve was
monophasic. Also, when they did the experiment with higher GB concentrations the
curve was similarly monophasic. Finally, when they added NaF to the plasma along
with low concentrations of GB, the biphasic curve became monophasic. Their
hypothesis was that fluoride had catalyzed the racemization of GB. As was expected,
at the higher GB concentration, the fluoride released from the hydrolyzed GB was
sufficient to cause racemization while at the lower GB concentration, racemization did
not occur.

To determine if GF behaves similarly when catalyzed by JD6.5 OPAA,
NaF was added to the enzymatic reaction containing 0.5 mM GF. Results (Figure 4)
show an essentially monophasic curve, consistent with fluoride-catalyzed racemization
of GF.
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Figure 4. JD6.5 OPAA catalysis of 0.5 mM GF in the presence of 1.0 mM NaF or
1.0 mM NaCl. The profile of the reaction with NaCl is biphasic and almost
identical to that with JD6.5 OPAA and GF alone, indicating that NaCl does not
catalyze GF racemization. However, in the presence of 1 mM NaF, the
reaction profile is almost monophasic, consistent with fluoride-catalyzed
racemization of the GF substrate. The magnitude of the NaF trace is
corrected for the exogenously added fluoride.

3.3 Gas Chromatographic Separation of GF Isomers.

To distinguish the two GF stereocisomers, an isothermal GC method was
developed (MATERIALS AND METHODS). The two GF stereoisomers were
consistently separated by 0.15 to 0.2 min at retention times between eight and nine min,
depending on the exact flow rate of the carrier gas. When racemic GF was injected, the
area of the first peak was always slightly greater than half the area of the second peak
(Figure 5.a).

34 Enzymatic Preparation and Polarimetry Analysis of a Single (-)GF Isomer.

A chromatographically pure (-)GF isomer was prepared by selectively
degrading the isomer on which the enzyme had the greater activity. The JD6.5 OPAA
enzyme reaction was run at 15 °C and pH 7.0 in order to minimize spontaneous
hydrolysis. At approximately the midpoint deflection of the reaction profile, the solution
was extracted with methylene chloride and the extract was analyzed by GC. A single
GF isomer peak was observed with a retention time corresponding to the second GC
peak (Figure 5.b).

14



The single isomer preparation was concentrated approximately 10-fold by
evaporation at room temperature and the optical rotation measurements were
performed on a Perkin Elmer 141 electronic polarimeter (589 nm sodium line). The
specific rotation was measured at —19.3°. Therefore, the enzymatic preparation is
enriched for the (-)GF isomer, indicating the JD6.5 OPAA enzyme selectively degraded
the (+)GF isomer.

a.
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S0 pA ] E
“d
1
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1 7.997 1.000e2

Figure 5. a. Gas chromatogram of 90° isothermal separation of GF isomers.
b. GF following OPAA degradation of one isomer — only the second peak is
still visible.
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3.5 Fluoride-Catalyzed Racemization vs. Allosteric Alteration of the Enzyme.

Although the data in Figure 4 are consistent with fluoride-catalyzed
racemization, an alternative explanation could be that fluoride was allosterically altering
the enzyme and thereby changing its stereoselective properties. In this hypothetical
case, the observed stereoselectivity would still occur only in the presence of sufficient
concentrations of fluoride. In order to differentiate between these two possibilities, NaF
was shaken with a solution of this single (-)GF isomer, with no enzyme present. ~
Subsequent GC analysis showed two peaks, consistent with NaF catalyzed
racemization of GF (Figure 6). Therefore, since the racemization occurs in the absence
of enzyme, the direct effect of NaF on GF appears to be at least one means by which
GF can be racemized.

180pA ] ]

1750 +

150

1&-3

1000 -

790

&0

250

4 P 8 _ 10 12 14

Peak # Ret Time Area %
1 9.280 17.12859
2 9.398 81.69664
3 10.059 0.6050568
4 10.140 0.56909

Figure 6. Gas chromatogram of single (-)GF isomer to which NaF was added.
The (+)GF peak has reappeared in the extract.

3.6 Complementation Test to Determine Stereospecificity of Three Enzymes.

Three different enzymes (JD6.5 OPAA, A. haloplanktis OPAA and wild-
type PTE) were tested individually and together in order to compare their
stereospecificity on 0.5 mM GF. As shown in Figure 7, the individual enzyme reactions
all produce similarly biphasic profiles. A complementation test was used to determine if
the enzymes were all acting on the same isomer or if one enzyme had activity on a
different isomer than the other two. If two enzymes had significantly differential

16



stereospecificity then the shape of the curve should have tended towards monophasic.
Experimentally, it was observed that the profile of the three enzyme reaction was
essentially indistinguishable from the individual enzyme reaction profiles. Since little or
no complementation was observed, it was evident that all three enzymes were primarily
active on the same isomer. Since the polarimetry experiment established that the
preference of the JD6.5 OPAA enzyme was for the (+)GF isomer, it can therefore be
concluded that the PTE and A. haloplanktis OPAA enzymes also exhibit preferential
activity on the (+) isomer.
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v
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E 400 - a 2 ug/ml PTE
‘,'-6 300 - s 2 ug/ml JD6.5 OPAA
©
€ 200 1 P4 = 2ug/ml A. haloplanktis
o OPAA
= « 1 ug/ml each JD6.5, PTE

and A. hal
0 10 20 30 40

Minutes

Figure 7. Biphasic fluoride release with PTE, JD6.5 OPAA and A. haloplanktis OPAA
each alone and in combination. No complementation was evident, indicating
that all three enzymes exhibited a marked preference for the same
sterecisomer.

3.7 Stereospecific Reaction of GF in Whole Blood and Erythrocytes.

Whole human blood was drawn into tubes containing
ethylenediaminetetraacetic acid (EDTA) to prevent clotting. To 5 mL of blood was
added 1 mg of GF. Following a 15 min incubation at room temperature, the mixture was
extracted with 1 mL of chloroform. The resulting extract was analyzed by GC and found
to also be enriched for the (-)GF isomer. GF spiking and extraction of enriched human
erythrocytes also yielded an enrichment of the (-)GF isomer. Although other
explanations may be possible, the simplest explanation may be that the human
paraoxonase enzyme in these samples exhibits the same stereoselectivity as the three
bacterial enzymes examined earlier in this study.
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3.8 AChE Inhibition of Respective GF Isomers.

The AChE inhibition was measured as a function of time in the presence
of racemic GF, chromatographically-pure (-)GF, and without GF present (negative
control). Since the (-) isomers of GA, GB, GD and VX are all much more toxic than the
(+) isomers, the logical hypothesis was that the (-)GF isomer would inhibit AChE more
strongly than racemic GF. If essentially all the toxicity is derived from a single isomer
(as is the case with GB, for example), then the slope of the inhibition with (-)GF would
be twice as steep as the inhibition with racemic GF. On the other hand, if essentially all
the toxicity of GF is derived from the (+) isomer, the (-)GF inhibition slope would be half
as steep as with racemic GF. If the two GF isomers are of similar toxicity, little or no
change would be expected in the slope of the inhibition plot.

Figure 8 shows the results of the AChE inhibition assays that were
performed in triplicate. Clearly, the (-)GF inhibits the AChE much more strongly than
the racemic GF. Therefore, it is apparent that all three wild-type bacterial enzymes are
preferentially degrading the less toxic isomer of GF.
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Figure 8. AChE inhibition by racemic and chromatographically pure (-)GF.

3.9 Stereospecificity of the PTE Mutant H254G/H259W/L303T (GWT).

In an attempt to identify an enzyme with preferential activity on the toxic
GF isomer, a number of PTE mutants were screened. Most of these mutants showed
either a marked preference for the non-toxic (+) isomer or had very low levels of activity
overall. The PTE mutant H254G/H259W/L303T (GWT) was of particular interest since
it was previously observed to have reversed stereospecificity on p-nitrophenyl
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derivatives of G-type nerve agents (fluoride leaving group was substituted with a p-
nitrophenyl group for colorimetric detection of the hydrolysis product). Figure 9 shows
the hydrolysis profiles for the GWT mutant, JD6.5 OPAA and the two enzymes
combined. Both enzymes alone exhibit a midpoint deflection and show
complementation when combined. Therefore, their stereospecificity is opposite and the
GWT mutant is preferentially catalyzing hydrolysis of the (-)GF isomer.

600 -

500 -

—6— 4 ug/mi OPAA + 20 ug/mi
GWT

—&— 8 ug/ml OPAA

400 -

300 -
0 —a&— 40 ug/ml GWT

200 - —— Spontaneous

micromolar F- Release

100 4 g4

0 5 10 15 20
Minutes

Figure 9. Complementation of GF stereochemistry: PTE mutant H254G/H259W/L303T
(GWT) and JD6.5 OPAA.

3.10 Enzymatic Preparation and Polarimetry Analysis of a Single (+)GF isomer.

A chromatographically pure (+)GF isomer was prepared by selectively
degrading the isomer on which the GWT enzyme had the greater activity (similar to the
reaction conducted previously with the JD6.5 OPAA enzyme to produce the (-) isomer).
At approximately the midpoint deflection of the reaction profile, the solution was
extracted with methylene chloride and the extract was analyzed by GC. A single GF
isomer peak was observed with a retention time corresponding to the first GC peak
(Figure 10).

The single isomer preparation was concentrated approximately 10-fold by
evaporation at room temperature and the optical rotation measurements were
performed on a Perkin Elmer 141 electronic polarimeter (589 nm sodium line). The
specific rotation was measured at +5°. Therefore, the enzymatic preparation is enriched
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for the (+)GF isomer, indicating the GWT enzyme selectively degraded the (-)GF

isomer.
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Figure 10.a. Racemic GF prior to enzymatic degradation.
b. GF following enzymatic degradation of one isomer with the
PTE mutant H254G/H259W/L303T. Only the first GC peak
is still visible.
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4. CONCLUSIONS

The JD6.5 OPAA enzyme was demonstrated to catalyze both GF
stereoisomers at similar rates when the concentration of GF was 3 mM, whereas the
same reaction with 0.5 mM GF showed marked stereospecificity, i.e., the plot of the
release of free fluoride vs. time had a distinct midpoint deflection to a much lower slope.

When NaF is added to the enzymatic reaction, the 0.5 mM GF biphasic
hydrolysis curve disappears. The same effect is not seen with the addition of NaCl to
the enzymatic reaction. However, the addition of NaF to a chromatographically-pure
single GF stereoisomer in the absence of enzyme causes racemization (the appearance
of two peaks on the chromatogram). The results are similar to those observed
previously with GB as the substrate, and are consistent with the fluoride-catalyzed
racemization of GF at concentrations above 0.5 mM.

Both GF stereocisomers were resolved chromatographically, alone and
together, using an isothermal GC method, described above.

A chromatographically-pure preparation of a single GF stereoisomer was
made by extracting the OPAA catalysis reaction just past its midpoint defiection.
Subsequent polarimetry analysis of the concentrated extract showed this stereocisomer
to be (-)GF, with an optical rotation of -19.3°. This result indicates that the OPAA
enzyme exhibits a preference for the (+)GF stereoisomer.

In addition to the JD6.5 OPAA enzyme, both the wild-type PTE and the
A. haloplanktis OPAA were also shown to exhibit stereospecificity in their catalysis of
0.5 mM GF. Assays using a combination of the three enzymes together showed that
neither of these latter two enzymes was able to complement the stereospecificity of
JD6.5 OPAA. Thus, all three enzymes prefer the (+)GF stereoisomer.

Assays with whole human blood and with enriched erythrocytes also
showed that the (+)GF stereoisomer was selectively degraded, since extracts showed
an enrichment for (-)GF. The simplest explanation may be that human paraoxonase
also exhibits a catalytic preference for the (+) isomer of GF.

The AChE inhibition of the purified (-)GF sterecisomer was approximately
twice that of the racemic mixture, suggesting that the majority of the toxicity of GF is
derived from the (-) sterecisomer. This is consistent with the other G and V-type nerve
agents for which the (-) sterecisomer also represents most of the toxicity of the racemic
compound.

A number of site-directed PTE mutants were screened for their activity
against the (-)GF stereocisomer. Most mutants either had the same stereospecificity as
the wild-type enzyme or had very little GF activity overall. One PTE mutant though
(H254G/H259W/L303T), exhibited a marked catalytic preference for the (-)GF
stereoisomer. This mutant enzyme was able to complement the activity of OPAA and
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yielded chromatographically-pure (+)GF from an assay extracted just past the midpoint
deflection. This mutant had previously been shown to have similar stereospecificity with
the p-nitrophenyl derivative of GB (p-nitrophenyl isopropylmethylphosphonate).

Using chemical nerve agent degrading enzymes with varying

stereospecificity, it was therefore possible to produce pure preparations of either GF
stereoisomer by selectively degrading the other sterecisomer.
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